
aiostream

Oct 04, 2019

Contents

1 Presentation 3

2 Stream operators 7

3 Core objects 15

4 Examples 19

5 Utilities 25

Python Module Index 27

Index 29

i

ii

aiostream

Generator-based operators for asynchronous iteration

Contents 1

http://aiostream.readthedocs.io/en/latest/?badge=latest
https://coveralls.io/github/vxgmichel/aiostream?branch=master
https://travis-ci.org/vxgmichel/aiostream
https://pypi.python.org/pypi/aiostream
https://pypi.python.org/pypi/aiostream/

aiostream

2 Contents

CHAPTER 1

Presentation

aiostream provides a collection of stream operators that can be combined to create asynchronous pipelines of opera-
tions.

It can be seen as an asynchronous version of itertools, although some aspects are slightly different. Essentially, all the
provided operators return a unified interface called a stream. A stream is an enhanced asynchronous iterable providing
the following features:

• Operator pipe-lining - using pipe symbol |

• Repeatability - every iteration creates a different iterator

• Safe iteration context - using async with and the stream method

• Simplified execution - get the last element from a stream using await

• Slicing and indexing - using square brackets []

• Concatenation - using addition symbol +

1.1 Requirements

The stream operators rely heavily on asynchronous generators (PEP 525):

• python >= 3.6

1.2 Stream operators

The stream operators are separated in 7 categories:

3

https://github.com/vxgmichel/aiostream
http://docs.python.org/3/library/itertools.html
http://www.python.org/dev/peps/pep-0525/
operators.html

aiostream

creation iterate, preserve, just, call, empty , throw , never, repeat, count, range
transforma-
tion

map, enumerate, starmap, cycle, chunks

selection take, takelast, skip, skiplast, getitem, filter, until, takewhile,
dropwhile

combination map, zip, merge, chain, ziplatest
aggregation accumulate, reduce, list
advanced concat, flatten, switch, concatmap, flatmap, switchmap
timing spaceout, timeout, delay
miscellaneous action, print

1.3 Demonstration

The following example demonstrates most of the streams capabilities:

import asyncio
from aiostream import stream, pipe

async def main():

Create a counting stream with a 0.2 seconds interval
xs = stream.count(interval=0.2)

Operators can be piped using '|'
ys = xs | pipe.map(lambda x: x**2)

Streams can be sliced
zs = ys[1:10:2]

Use a stream context for proper resource management
async with zs.stream() as streamer:

Asynchronous iteration
async for z in streamer:

Print 1, 9, 25, 49 and 81
print('->', z)

Streams can be awaited and return the last value
print('92 = ', await zs)

Streams can run several times
print('92 = ', await zs)

Streams can be concatenated
one_two_three = stream.just(1) + stream.range(2, 4)

Print [1, 2, 3]
print(await stream.list(one_two_three))

Run main coroutine
loop = asyncio.get_event_loop()

(continues on next page)

4 Chapter 1. Presentation

aiostream

(continued from previous page)

loop.run_until_complete(main())
loop.close()

More examples are available in the example section.

1.4 References

This library is inspired by:

• PEP 525: Asynchronous Generators

• Rx - Reactive Extensions

• aioreactive - Async/await reactive tools for Python 3.5+

• itertools - Functions creating iterators for efficient looping

1.4. References 5

examples.html
http://www.python.org/dev/peps/pep-0525/
http://reactivex.io/
http://github.com/dbrattli/aioreactive
http://docs.python.org/3/library/itertools.html

aiostream

6 Chapter 1. Presentation

CHAPTER 2

Stream operators

The stream operators are separated in 7 categories:

creation iterate, preserve, just, call, empty , throw , never, repeat, count, range
transforma-
tion

map, enumerate, starmap, cycle, chunks

selection take, takelast, skip, skiplast, getitem, filter, until, takewhile,
dropwhile

combination map, zip, merge, chain, ziplatest
aggregation accumulate, reduce, list
advanced concat, flatten, switch, concatmap, flatmap, switchmap
timing spaceout, timeout, delay
miscellaneous action, print

They can be found in the aiostream.stream module.

2.1 Pipe-lining

Most of the operators have a pipe() method corresponding to their equivalent pipe operator. They are also gathered
and accessible through the aiostream.pipe module. The pipe operators allow a 2-step instanciation.

For instance, the following stream:

ys = stream.map(xs, lambda x: x**2)

is strictly equivalent to:

ys = pipe.map(lambda x: x**2)(xs)

and can be written as:

7

aiostream

ys = xs | pipe.map(lambda x: x**2)

This synthax comes in handy when several operators are chained:

ys = (xs
| pipe.operator1(*args1)
| pipe.operator2(*args2)
| pipe.operator3(*args3))

2.2 Creation operators

Note: Those operators do not have a pipe equivalent.

class aiostream.stream.iterate(it)
Generate values from a sychronous or asynchronous iterable.

class aiostream.stream.preserve(ait)
Generate values from an asynchronous iterable without explicitly closing the corresponding iterator.

class aiostream.stream.just(value)
Await if possible, and generate a single value.

class aiostream.stream.call(func, *args, **kwargs)
Call the given and generate a single value.

Await if the provided function is asynchronous.

class aiostream.stream.empty
Terminate without generating any value.

class aiostream.stream.throw(exc)
Throw an exception without generating any value.

class aiostream.stream.never
Hang forever without generating any value.

class aiostream.stream.repeat(value, times=None, *, interval=0)
Generate the same value a given number of times.

If times is None, the value is repeated indefinitely. An optional interval can be given to space the values out.

class aiostream.stream.range(*args, interval=0)
Generate a given range of numbers.

It supports the same arguments as the builtin function. An optional interval can be given to space the values out.

class aiostream.stream.count(start=0, step=1, *, interval=0)
Generate consecutive numbers indefinitely.

Optional starting point and increment can be defined, respectively defaulting to 0 and 1.

An optional interval can be given to space the values out.

8 Chapter 2. Stream operators

aiostream

2.3 Transformation operators

class aiostream.stream.map(source, func, *more_sources, ordered=True, task_limit=None)
Apply a given function to the elements of one or several asynchronous sequences.

Each element is used as a positional argument, using the same order as their respective sources. The generation
continues until the shortest sequence is exhausted. The function can either be synchronous or asynchronous
(coroutine function).

The results can either be returned in or out of order, depending on the corresponding ordered argument. This
argument is ignored if the provided function is synchronous.

The coroutines run concurrently but their amount can be limited using the task_limit argument. A value of
1will cause the coroutines to run sequentially. This argument is ignored if the provided function is synchronous.

If more than one sequence is provided, they’re also awaited concurrently, so that their waiting times don’t add
up.

It might happen that the provided function returns a coroutine but is not a coroutine function per se. In this case,
one can wrap the function with aiostream.async_ in order to force map to await the resulting coroutine.
The following example illustrates the use async_ with a lambda function:

from aiostream import stream, async_
...
ys = stream.map(xs, async_(lambda ms: asyncio.sleep(ms / 1000)))

Note: map is considered a combination operator if used with extra sources, and a transformation operator
otherwise

class aiostream.stream.enumerate(source, start=0, step=1)
Generate (index, value) tuples from an asynchronous sequence.

This index is computed using a starting point and an increment, respectively defaulting to 0 and 1.

class aiostream.stream.starmap(source, func, ordered=True, task_limit=None)
Apply a given function to the unpacked elements of an asynchronous sequence.

Each element is unpacked before applying the function. The given function can either be synchronous or asyn-
chronous.

The results can either be returned in or out of order, depending on the corresponding ordered argument. This
argument is ignored if the provided function is synchronous.

The coroutines run concurrently but their amount can be limited using the task_limit argument. A value of
1will cause the coroutines to run sequentially. This argument is ignored if the provided function is synchronous.

class aiostream.stream.cycle(source)
Iterate indefinitely over an asynchronous sequence.

Note: it does not perform any buffering, but re-iterate over the same given sequence instead. If the sequence is
not re-iterable, the generator might end up looping indefinitely without yielding any item.

class aiostream.stream.chunks(source, n)
Generate chunks of size n from an asynchronous sequence.

The chunks are lists, and the last chunk might contain less than n elements.

2.3. Transformation operators 9

aiostream

2.4 Selection operators

class aiostream.stream.take(source, n)
Forward the first n elements from an asynchronous sequence.

If n is negative, it simply terminates before iterating the source.

class aiostream.stream.takelast(source, n)
Forward the last n elements from an asynchronous sequence.

If n is negative, it simply terminates after iterating the source.

Note: it is required to reach the end of the source before the first element is generated.

class aiostream.stream.skip(source, n)
Forward an asynchronous sequence, skipping the first n elements.

If n is negative, no elements are skipped.

class aiostream.stream.skiplast(source, n)
Forward an asynchronous sequence, skipping the last n elements.

If n is negative, no elements are skipped.

Note: it is required to reach the n+1 th element of the source before the first element is generated.

class aiostream.stream.getitem(source, index)
Forward one or several items from an asynchronous sequence.

The argument can either be a slice or an integer. See the slice and item operators for more information.

class aiostream.stream.filter(source, func)
Filter an asynchronous sequence using an arbitrary function.

The function takes the item as an argument and returns True if it should be forwarded, False otherwise. The
function can either be synchronous or asynchronous.

class aiostream.stream.until(source, func)
Forward an asynchronous sequence until a condition is met.

Contrary to the takewhile operator, the last tested element is included in the sequence.

The given function takes the item as an argument and returns a boolean corresponding to the condition to meet.
The function can either be synchronous or asynchronous.

class aiostream.stream.takewhile(source, func)
Forward an asynchronous sequence while a condition is met.

Contrary to the until operator, the last tested element is not included in the sequence.

The given function takes the item as an argument and returns a boolean corresponding to the condition to meet.
The function can either be synchronous or asynchronous.

class aiostream.stream.dropwhile(source, func)
Discard the elements from an asynchronous sequence while a condition is met.

The given function takes the item as an argument and returns a boolean corresponding to the condition to meet.
The function can either be synchronous or asynchronous.

10 Chapter 2. Stream operators

aiostream

2.5 Combination operators

class aiostream.stream.map(source, func, *more_sources, ordered=True, task_limit=None)
Apply a given function to the elements of one or several asynchronous sequences.

Each element is used as a positional argument, using the same order as their respective sources. The generation
continues until the shortest sequence is exhausted. The function can either be synchronous or asynchronous
(coroutine function).

The results can either be returned in or out of order, depending on the corresponding ordered argument. This
argument is ignored if the provided function is synchronous.

The coroutines run concurrently but their amount can be limited using the task_limit argument. A value of
1will cause the coroutines to run sequentially. This argument is ignored if the provided function is synchronous.

If more than one sequence is provided, they’re also awaited concurrently, so that their waiting times don’t add
up.

It might happen that the provided function returns a coroutine but is not a coroutine function per se. In this case,
one can wrap the function with aiostream.async_ in order to force map to await the resulting coroutine.
The following example illustrates the use async_ with a lambda function:

from aiostream import stream, async_
...
ys = stream.map(xs, async_(lambda ms: asyncio.sleep(ms / 1000)))

Note: map is considered a combination operator if used with extra sources, and a transformation operator
otherwise

class aiostream.stream.zip(*sources)
Combine and forward the elements of several asynchronous sequences.

Each generated value is a tuple of elements, using the same order as their respective sources. The generation
continues until the shortest sequence is exhausted.

Note: the different sequences are awaited in parrallel, so that their waiting times don’t add up.

class aiostream.stream.merge(*sources)
Merge several asynchronous sequences together.

All the sequences are iterated simultaneously and their elements are forwarded as soon as they’re available. The
generation continues until all the sequences are exhausted.

class aiostream.stream.chain(*sources)
Chain asynchronous sequences together, in the order they are given.

Note: the sequences are not iterated until it is required, so if the operation is interrupted, the remaining sequences
will be left untouched.

class aiostream.stream.ziplatest(*sources, partial=True, default=None)
Combine several asynchronous sequences together, producing a tuple with the lastest element of each sequence
whenever a new element is received.

The value to use when a sequence has not procuded any element yet is given by the default argument (de-
faulting to None).

The producing of partial results can be disabled by setting the optional argument partial to False.

All the sequences are iterated simultaneously and their elements are forwarded as soon as they’re available. The
generation continues until all the sequences are exhausted.

2.5. Combination operators 11

aiostream

2.6 Aggregatation operators

class aiostream.stream.accumulate(source, func=<built-in function add>, initializer=None)
Generate a series of accumulated sums (or other binary function) from an asynchronous sequence.

If initializer is present, it is placed before the items of the sequence in the calculation, and serves as a
default when the sequence is empty.

class aiostream.stream.reduce(source, func, initializer=None)
Apply a function of two arguments cumulatively to the items of an asynchronous sequence, reducing the se-
quence to a single value.

If initializer is present, it is placed before the items of the sequence in the calculation, and serves as a
default when the sequence is empty.

class aiostream.stream.list(source)
Build a list from an asynchronous sequence.

All the intermediate steps are generated, starting from the empty list.

This operator can be used to easily convert a stream into a list:

lst = await stream.list(x)

..note:: The same list object is produced at each step in order to avoid memory copies.

2.7 Advanced operators

Note: The concat, flatten and switch operators all take a stream of streams as an argument (also called
stream of higher order) and return a flattened stream using their own merging strategy.

class aiostream.stream.concat(source, task_limit=None)
Given an asynchronous sequence of sequences, generate the elements of the sequences in order.

The sequences are awaited concurrently, although it’s possible to limit the amount of running sequences using
the task_limit argument.

Errors raised in the source or an element sequence are propagated.

class aiostream.stream.flatten(source, task_limit=None)
Given an asynchronous sequence of sequences, generate the elements of the sequences as soon as they’re re-
ceived.

The sequences are awaited concurrently, although it’s possible to limit the amount of running sequences using
the task_limit argument.

Errors raised in the source or an element sequence are propagated.

class aiostream.stream.switch(source)
Given an asynchronous sequence of sequences, generate the elements of the most recent sequence.

Element sequences are generated eagerly, and closed once they are superseded by a more recent sequence. Once
the main sequence is finished, the last subsequence will be exhausted completely.

Errors raised in the source or an element sequence (that was not already closed) are propagated.

12 Chapter 2. Stream operators

aiostream

Note: The concatmap, flatmap and switchmap operators provide a simpler access to the three merging
strategy listed above.

class aiostream.stream.concatmap(source, func, *more_sources, task_limit=None)
Apply a given function that creates a sequence from the elements of one or several asynchronous sequences, and
generate the elements of the created sequences in order.

The function is applied as described in map, and must return an asynchronous sequence. The returned sequences
are awaited concurrently, although it’s possible to limit the amount of running sequences using the task_limit
argument.

class aiostream.stream.flatmap(source, func, *more_sources, task_limit=None)
Apply a given function that creates a sequence from the elements of one or several asynchronous sequences, and
generate the elements of the created sequences as soon as they arrive.

The function is applied as described in map, and must return an asynchronous sequence. The returned sequences
are awaited concurrently, although it’s possible to limit the amount of running sequences using the task_limit
argument.

Errors raised in a source or output sequence are propagated.

class aiostream.stream.switchmap(source, func, *more_sources)
Apply a given function that creates a sequence from the elements of one or several asynchronous sequences and
generate the elements of the most recently created sequence.

The function is applied as described in map, and must return an asynchronous sequence. Errors raised in a
source or output sequence (that was not already closed) are propagated.

2.8 Timing operators

class aiostream.stream.spaceout(source, interval)
Make sure the elements of an asynchronous sequence are separated in time by the given interval.

class aiostream.stream.timeout(source, timeout)
Raise a time-out if an element of the asynchronous sequence takes too long to arrive.

Note: the timeout is not global but specific to each step of the iteration.

class aiostream.stream.delay(source, delay)
Delay the iteration of an asynchronous sequence.

2.9 Miscellaneous operators

class aiostream.stream.action(source, func)
Perform an action for each element of an asynchronous sequence without modifying it.

The given function can be synchronous or asynchronous.

class aiostream.stream.print(source, template=None, **kwargs)
Print each element of an asynchronous sequence without modifying it.

An optional template can be provided to be formatted with the elements. All the keyword arguments are for-
warded to the builtin function print.

2.8. Timing operators 13

aiostream

14 Chapter 2. Stream operators

CHAPTER 3

Core objects

3.1 Stream base class

class aiostream.core.Stream(factory)
Enhanced asynchronous iterable.

It provides the following features:

• Operator pipe-lining - using pipe symbol |

• Repeatability - every iteration creates a different iterator

• Safe iteration context - using async with and the stream method

• Simplified execution - get the last element from a stream using await

• Slicing and indexing - using square brackets []

• Concatenation - using addition symbol +

It is not meant to be instanciated directly. Use the stream operators instead.

Example:

xs = stream.count() # xs is a stream object
ys = xs | pipe.skip(5) # pipe xs and skip the first 5 elements
zs = ys[5:10:2] # slice ys using start, stop and step

async with zs.stream() as streamer: # stream zs in a safe context
async for z in streamer: # iterate the zs streamer

print(z) # Prints 10, 12, 14

result = await zs # await zs and return its last element
print(result) # Prints 14
result = await zs # zs can be used several times
print(result) # Prints 14

15

aiostream

stream()
Return a streamer context for safe iteration.

Example:

xs = stream.count()
async with xs.stream() as streamer:

async for item in streamer:
<block>

3.2 Stream context manager

aiostream.core.streamcontext(aiterable)
Return a stream context manager from an asynchronous iterable.

The context management makes sure the aclose asynchronous method of the corresponding iterator has run
before it exits. It also issues warnings and RuntimeError if it is used incorrectly.

It is safe to use with any asynchronous iterable and prevent asynchronous iterator context to be wrapped twice.

Correct usage:

ait = some_asynchronous_iterable()
async with streamcontext(ait) as streamer:

async for item in streamer:
<block>

For streams objects, it is possible to use the stream method instead:

xs = stream.count()
async with xs.stream() as streamer:

async for item in streamer:
<block>

3.3 Operator decorator

aiostream.core.operator(func=None, *, pipable=False)
Create a stream operator from an asynchronous generator (or any function returning an asynchronous iterable).

Decorator usage:

@operator
async def random(offset=0., width=1.):

while True:
yield offset + width * random.random()

Decorator usage for pipable operators:

@operator(pipable=True)
async def multiply(source, factor):

async with streamcontext(source) as streamer:
async for item in streamer:

yield factor * item

16 Chapter 3. Core objects

aiostream

In the case of pipable operators, the first argument is expected to be the asynchronous iteratable used for piping.

The return value is a dynamically created class. It has the same name, module and doc as the original function.

A new stream is created by simply instanciating the operator:

xs = random()
ys = multiply(xs, 2)

The original function is called at instanciation to check that signature match. In the case of pipable operators,
the source is also checked for asynchronous iteration.

The operator also have a pipe class method that can be used along with the piping synthax:

xs = random()
ys = xs | multiply.pipe(2)

This is strictly equivalent to the previous example.

Other methods are available:

• original: the original function as a static method

• raw: same as original but add extra checking

The raw method is useful to create new operators from existing ones:

@operator(pipable=True)
def double(source):

return multiply.raw(source, 2)

3.3. Operator decorator 17

aiostream

18 Chapter 3. Core objects

CHAPTER 4

Examples

4.1 Demonstration

The following example demonstrates most of the streams capabilities:

import asyncio
from aiostream import stream, pipe

async def main():

Create a counting stream with a 0.2 seconds interval
xs = stream.count(interval=0.2)

Operators can be piped using '|'
ys = xs | pipe.map(lambda x: x**2)

Streams can be sliced
zs = ys[1:10:2]

Use a stream context for proper resource management
async with zs.stream() as streamer:

Asynchronous iteration
async for z in streamer:

Print 1, 9, 25, 49 and 81
print('->', z)

Streams can be awaited and return the last value
print('92 = ', await zs)

Streams can run several times
print('92 = ', await zs)

(continues on next page)

19

aiostream

(continued from previous page)

Streams can be concatenated
one_two_three = stream.just(1) + stream.range(2, 4)

Print [1, 2, 3]
print(await stream.list(one_two_three))

Run main coroutine
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()

4.2 Simple computation

This simple example computes 112 + 132 in 1.5 second:

import asyncio
from aiostream import stream, pipe

async def main():
This stream computes 112 + 132 in 1.5 second
xs = (

stream.count(interval=0.1) # Count from zero every 0.1 s
| pipe.skip(10) # Skip the first 10 numbers
| pipe.take(5) # Take the following 5
| pipe.filter(lambda x: x % 2) # Keep odd numbers
| pipe.map(lambda x: x ** 2) # Square the results
| pipe.accumulate() # Add the numbers together

)
print('112 + 132 = ', await xs)

Run main coroutine
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()

4.3 Preserve a generator

This example shows how to preserve an async generator from being closed by the iteration context:

import asyncio
from aiostream import stream, operator

async def main():
async def agen():

yield 1
yield 2

(continues on next page)

20 Chapter 4. Examples

aiostream

(continued from previous page)

yield 3

The xs stream does not preserve the generator
xs = stream.iterate(agen())
print(await xs[0]) # Print 1
print(await stream.list(xs)) # Print [] (2 and 3 have never yielded)

The xs stream does preserve the generator
xs = stream.preserve(agen())
print(await xs[0]) # Print 1
print(await stream.list(xs)) # Print [2, 3]

Transform agen into a stream operator
agen_stream = operator(agen)
xs = agen_stream() # agen is now reusable
print(await stream.list(xs)) # Print [1, 2, 3]
print(await stream.list(xs)) # Print [1, 2, 3]

Run main coroutine
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()

4.4 Norm server

The next example runs a TCP server that computes the euclidean norm of vectors for its clients.

Run the server:

$ python3.6 norm_server.py
Serving on ('127.0.0.1', 8888)

Test using a netcat client:

$ nc localhost 8888

Compute the Euclidean norm of a vector

[...]

Check the logs on the server side, and see how the computation is performed on the fly.

import asyncio
from aiostream import stream, pipe

Constants

INSTRUCTIONS = """\

Compute the Euclidean norm of a vector

Enter each coordinate of the vector on a separate line, and add an empty
line at the end to get the result. Anything else will result in an error.

(continues on next page)

4.4. Norm server 21

aiostream

(continued from previous page)

> """

ERROR = """\
-> Error ! Try again...
"""

RESULT = """\
-> Euclidean norm: {}
"""

Client handler

async def euclidean_norm_handler(reader, writer):

Define lambdas
strip = lambda x: x.decode().strip()
nonempty = lambda x: x != ''
square = lambda x: x ** 2
write_cursor = lambda x: writer.write(b'> ')
square_root = lambda x: x ** 0.5

Create awaitable
handle_request = (

stream.iterate(reader)
| pipe.print('string: {}')
| pipe.map(strip)
| pipe.takewhile(nonempty)
| pipe.map(float)
| pipe.map(square)
| pipe.print('square: {:.2f}')
| pipe.action(write_cursor)
| pipe.accumulate(initializer=0)
| pipe.map(square_root)
| pipe.print('norm -> {:.2f}')

)

Loop over norm computations
while not reader.at_eof():

writer.write(INSTRUCTIONS.encode())
try:

result = await handle_request
except ValueError:

writer.write(ERROR.encode())
else:

writer.write(RESULT.format(result).encode())

Main function

def run_server(bind='127.0.0.1', port=8888):

Start the server
loop = asyncio.get_event_loop()
coro = asyncio.start_server(euclidean_norm_handler, bind, port)
server = loop.run_until_complete(coro)

(continues on next page)

22 Chapter 4. Examples

aiostream

(continued from previous page)

Serve requests until Ctrl+C is pressed
print('Serving on {}'.format(server.sockets[0].getsockname()))
try:

loop.run_forever()
except KeyboardInterrupt:

pass

Close the server
server.close()
loop.run_until_complete(server.wait_closed())
loop.close()

Main execution

if __name__ == '__main__':
run_server()

4.5 Extra operators

This example shows how extra operators can be created and combined with others:

import asyncio
import random as random_module

from aiostream import operator, pipe, streamcontext

@operator
async def random(offset=0., width=1., interval=0.1):

"""Generate a stream of random numbers."""
while True:

await asyncio.sleep(interval)
yield offset + width * random_module.random()

@operator(pipable=True)
async def power(source, exponent):

"""Raise the elements of an asynchronous sequence to the given power."""
async with streamcontext(source) as streamer:

async for item in streamer:
yield item ** exponent

@operator(pipable=True)
def square(source):

"""Square the elements of an asynchronous sequence."""
return power.raw(source, 2)

async def main():
xs = (

random() # Stream random numbers
| square.pipe() # Square the values

(continues on next page)

4.5. Extra operators 23

aiostream

(continued from previous page)

| pipe.take(5) # Take the first five
| pipe.accumulate()) # Sum the values

print(await xs)

Run main coroutine
loop = asyncio.get_event_loop()
loop.run_until_complete(main())
loop.close()

24 Chapter 4. Examples

CHAPTER 5

Utilities

aiostream also provides utilites for general asynchronous iteration and asynchronous context management.

5.1 Asynchronous iteration

Utilities for asynchronous iteration.

aiostream.aiter_utils.aiter(obj)
Access aiter magic method.

aiostream.aiter_utils.anext(obj)
Access anext magic method.

aiostream.aiter_utils.await_(obj)
Identity coroutine function.

aiostream.aiter_utils.async_(fn)
Wrap the given function into a coroutine function.

aiostream.aiter_utils.is_async_iterable(obj)
Check if the given object is an asynchronous iterable.

aiostream.aiter_utils.assert_async_iterable(obj)
Raise a TypeError if the given object is not an asynchronous iterable.

aiostream.aiter_utils.is_async_iterator(obj)
Check if the given object is an asynchronous iterator.

aiostream.aiter_utils.assert_async_iterator(obj)
Raise a TypeError if the given object is not an asynchronous iterator.

class aiostream.aiter_utils.AsyncIteratorContext(aiterator)
Asynchronous iterator with context management.

The context management makes sure the aclose asynchronous method of the corresponding iterator has run
before it exits. It also issues warnings and RuntimeError if it is used incorrectly.

25

https://github.com/vxgmichel/aiostream

aiostream

Correct usage:

ait = some_asynchronous_iterable()
async with AsyncIteratorContext(ait) as safe_ait:

async for item in safe_ait:
<block>

It is nonetheless not meant to use directly. Prefer aitercontext helper instead.

aiostream.aiter_utils.aitercontext(aiterable, *, cls=<class
’aiostream.aiter_utils.AsyncIteratorContext’>)

Return an asynchronous context manager from an asynchronous iterable.

The context management makes sure the aclose asynchronous method has run before it exits. It also issues
warnings and RuntimeError if it is used incorrectly.

It is safe to use with any asynchronous iterable and prevent asynchronous iterator context to be wrapped twice.

Correct usage:

ait = some_asynchronous_iterable()
async with aitercontext(ait) as safe_ait:

async for item in safe_ait:
<block>

An optional subclass of AsyncIteratorContext can be provided. This class will be used to wrap the given iterable.

Reference table:

creation iterate, preserve, just, call, empty , throw , never, repeat, count, range
transforma-
tion

map, enumerate, starmap, cycle, chunks

selection take, takelast, skip, skiplast, getitem, filter, until, takewhile,
dropwhile

combination map, zip, merge, chain, ziplatest
aggregation accumulate, reduce, list
advanced concat, flatten, switch, concatmap, flatmap, switchmap
timing spaceout, timeout, delay
miscellaneous action, print

26 Chapter 5. Utilities

Python Module Index

a
aiostream.aiter_utils, 25
aiostream.core, 15
aiostream.stream, 3

27

aiostream

28 Python Module Index

Index

A
accumulate (class in aiostream.stream), 12
action (class in aiostream.stream), 13
aiostream.aiter_utils (module), 25
aiostream.core (module), 15
aiostream.stream (module), 3, 7, 26
aiter() (in module aiostream.aiter_utils), 25
aitercontext() (in module aiostream.aiter_utils),

26
anext() (in module aiostream.aiter_utils), 25
assert_async_iterable() (in module

aiostream.aiter_utils), 25
assert_async_iterator() (in module

aiostream.aiter_utils), 25
async_() (in module aiostream.aiter_utils), 25
AsyncIteratorContext (class in

aiostream.aiter_utils), 25
await_() (in module aiostream.aiter_utils), 25

C
call (class in aiostream.stream), 8
chain (class in aiostream.stream), 11
chunks (class in aiostream.stream), 9
concat (class in aiostream.stream), 12
concatmap (class in aiostream.stream), 13
count (class in aiostream.stream), 8
cycle (class in aiostream.stream), 9

D
delay (class in aiostream.stream), 13
dropwhile (class in aiostream.stream), 10

E
empty (class in aiostream.stream), 8
enumerate (class in aiostream.stream), 9

F
filter (class in aiostream.stream), 10
flatmap (class in aiostream.stream), 13

flatten (class in aiostream.stream), 12

G
getitem (class in aiostream.stream), 10

I
is_async_iterable() (in module

aiostream.aiter_utils), 25
is_async_iterator() (in module

aiostream.aiter_utils), 25
iterate (class in aiostream.stream), 8

J
just (class in aiostream.stream), 8

L
list (class in aiostream.stream), 12

M
map (class in aiostream.stream), 9, 11
merge (class in aiostream.stream), 11

N
never (class in aiostream.stream), 8

O
operator() (in module aiostream.core), 16

P
preserve (class in aiostream.stream), 8
print (class in aiostream.stream), 13

R
range (class in aiostream.stream), 8
reduce (class in aiostream.stream), 12
repeat (class in aiostream.stream), 8

S
skip (class in aiostream.stream), 10

29

aiostream

skiplast (class in aiostream.stream), 10
spaceout (class in aiostream.stream), 13
starmap (class in aiostream.stream), 9
Stream (class in aiostream.core), 15
stream() (aiostream.core.Stream method), 15
streamcontext() (in module aiostream.core), 16
switch (class in aiostream.stream), 12
switchmap (class in aiostream.stream), 13

T
take (class in aiostream.stream), 10
takelast (class in aiostream.stream), 10
takewhile (class in aiostream.stream), 10
throw (class in aiostream.stream), 8
timeout (class in aiostream.stream), 13

U
until (class in aiostream.stream), 10

Z
zip (class in aiostream.stream), 11
ziplatest (class in aiostream.stream), 11

30 Index

	Presentation
	Stream operators
	Core objects
	Examples
	Utilities
	Python Module Index
	Index

